
The Network Certification
Description Language

University of Colorado - Colorado Springs
Master’s Thesis Defense
February 16th, 2017
Cody Hanson

Executive Summary.

● Develops a new theory for formal verification of network
behavior

● A New language tool is presented:
○ Network Certification Description Language (NETCDL)

● Evaluation Outcomes:
○ The language is simple to understand for human users
○ Supports the majority of common use cases

● Discusses reference design for a NETCDL certifier, and how
certifiers can become important tools for network engineers

● Defined as an open standard.

Motivation:
Modern networks are complex and costly to install and verify.

Did I get my VLAN’s right?

Are my routing tables
operating correctly?

Are the resources my users
need available?

Is there connectivity to the
Internet?

Can an unauthorized user
reach a secured area?

How can you be sure?

Sources of Network Complexity

● Sophisticated Routers, Switches, and Firewalls
● Evolving Wireless deployments
● Moves, Adds, and Changes
● Old, Unknown, or Unverified cabling
● Distributed campuses and remote sites
● Nobody wrote anything down

Current Verification Strategies

● Home-made scripts (requires programming knowledge)
● Plugging in the laptop + ad-hoc testing
● Commercial network tools (expensive and rigid)
● Waiting for a problem to be reported (impacts users)

A wealth of verification tools are available
for Hardware and Software Engineers

Other Engineers
can verify their
work, why not
Network Engineers
as well?

NETCDL
The Network Certification
Description Language

A domain specific
language for making
assertions about network
connectivity

Designed for humans

#Map IP addresses to names
define host 10.0.0.1 as myRouter
define host 10.0.0.105 as myWebserver
define network 192.168.1.0/24 as secured_network

#Describe link behavior
link speed should be 1000Mbps
link duplex should be full

#Describe VLANs
vlan should be 500

#Describe DHCP behavior
dhcp server should be myRouter
dhcp network should be 10.0.0.0/24
dhcp dns should be 8.8.8.8
dhcp gateway should be myRouter

#Describe behavior of the myRouter
myRouter should be reachable by ping
myRouter should be reachable on TCP port 22
myRouter should not be reachable on TCP port 23

#Describe traffic on the wire
packets from secured_network should not be seen
Packets with type 0x18 should not be seen

#And More...

Network Certification Use Model

Certifier
Software

Pass

Fail

NETCDL
Specification
Document

Interface Under Test

Input

Probes
and

analysis

Render
Decision

Impact of NETCDL

Installing and maintaining a network becomes...

● Documented
● Version Controlled
● Reproducible
● More Accessible

Language Grammar Design

Language
Goals

1. Enable users to describe
how networks should
behave

2. Be easy for humans to write.
Easier than programming.

3. Be easy for humans to read.
Even if not familiar with the
language.

English Phrases;
No complicated syntax;
Context free grammar

link speed should be 1000Mb/s

dhcp network should be 192.168.1.0/24

SecuredServer should not be reachable by ping

http server at 10.0.0.10 should serve "/index.html"

packets from host 10.250.0.1 should not be seen

<should-expr> ::= "should" | "should not"
<link-statement> ::= <link-speed> | <link-duplex>

<link-speed> ::= "link speed" <should-expr> "be"
<speed>

<link-speed> ::= "link duplex" <should-expr> "be"
<duplex>

<duplex> ::= "full" | "half"
<speed> ::= "10Mb" | "100Mb" | "1000Mb" | "1Gb"

<port-open-statement> ::= <reachable> "on"
<transport> "port" <port-number>

<ping-statement> ::= <reachable> "by ping"

EBNF NETCDL Grammar Snippet

Reference Certifier Design

A Certifier’s Job:

1. Parse the input NETCDL statements
2. Evaluate the statements for truth
3. Report results
4. “Leave no trace” -- Relinquish key resources

Reference Design Philosophy

● Promote Extensible design
● Promote Performant design
● Illustrate use of the language,

demonstrate the certification concept.

Certifier Software Blocks

Python

Scapy[6]

[16]

Example: Simple Certifier Output

Evaluation

Evaluation - Key Questions

● How complex is the language?
○ We want it to feel like a natural language
○ Improves adoption and widens audience

● Can users express their ideas?
○ Must adapt to real life situations and demands

● Is the certifier software high quality?
○ To serve as reference implementation

Measuring Grammar Complexity

● An objective evaluation of language properties
● Grammar metrics suite SdfMetz [3]
● Compare results to other well known computer languages

EBNF: <ping-statement> ::= <reachable> "by ping"

SDF: ShouldBeReachable ByPing -> PingStatement

Metric Description Practical Impact

TERM Number of unique terminals Impacts the size of the vocabulary a user must comprehend

VAR Number of defined non-terminals Large VAR can increase program maintenance cost due to
cascading effects to rest of grammar

PROD Number of defined production rules More production rules imply more rules governing the
structure of the grammar

MCC McCabe’s Cyclomatic Complexity. Number of
linearly independent paths (or decisions)
through a graph. Related to PROD.

Measures cognitive impact on user, due to branch
complexity

TIMP Tree Impurity Measures to what degree that the parse tree of the grammar
is actually a tree. 0% means the graph is a perfect tree,
100% means the graph is fully connected

DEP Size of largest level Maximum Number of non-terminals in a level of the parse
tree. Higher numbers denote wider trees, which increase
grammar complexity

HEI Maximum Height of Parse Tree Taller parse trees denote more
complex grammar structure

E Program Effort - Sometimes referred to as
Halstead Effort [39]

Computation that combines frequency of occurrence for
operators and operands into a single number. Useful for
comparing complexity between grammars of different sizes.

Grammar Complexity Metrics

Grammar Metrics Comparison
Reference Dataset

Evaluating Language Expressiveness

● Identify important use cases
● Reference respected texts

○ Cisco Interconnecting
Network Devices
Vol 1 and 2 [35][36]

○ Network Maintenance and
Troubleshooting Guide
Fluke Networks [2]

Common Use Case Coverage

● 68% coverage for identified use cases.
● Coverage == Language and Certifier support
● Hardware Difficulties:

○ Power Over Ethernet
○ Copper/Fiber Time-domain Reflectometry
○ Line-rate packet capture

Evaluating Reference Certifier Quality

● Comprehensive Unit Test Suite
● Adherence to Certifier Standards Document

Code Coverage Report Generated by py.test
Name Stmts Miss Cover
--
netcdl/ActiveTest.py 14 4 71%
netcdl/Certifier.py 97 22 77%
netcdl/DHCPTest.py 69 0 100%
netcdl/DNSTest.py 30 4 87%
netcdl/DefineMap.py 10 0 100%
netcdl/EthtoolParser.py 16 0 100%
netcdl/FileFetchTest.py 52 0 100%
netcdl/FrameTypeTest.py 17 0 100%
netcdl/IperfTest.py 37 0 100%
netcdl/LinkControl.py 7 0 100%
netcdl/LinkDuplexTest.py 18 0 100%
netcdl/LinkSpeedTest.py 19 0 100%
netcdl/PacketCapture.py 25 0 100%
netcdl/PacketFromTest.py 28 0 100%
netcdl/PacketPortTest.py 29 0 100%
netcdl/PacketTypeTest.py 20 0 100%
netcdl/PingTest.py 19 0 100%
netcdl/PortOpenTest.py 45 11 76%
netcdl/Report.py 18 0 100%
netcdl/Test.py 16 0 100%
netcdl/TestResult.py 11 0 100%
netcdl/TraceRouteTest.py 25 0 100%
netcdl/__init__.py 0 0 100%
netcdl/netcdl.py 32 16 50%
--
TOTAL 654 57 91%

Software Quality
Indicators

● Less code
is better

● Write less,
reuse more

● Modular designs
promote
extensibility

Discussion

Threats to Validity

Key
Assumptions:

● Low grammar complexity metrics
correlate with language
ease of use in real life

● Benefits of formal verification
outweigh costs

● Network maintenance and installation
will continue to be performed manually
(i.e. mistakes are not automated out of
the process)

Concluding Thoughts

Thesis Outcomes

● Top 5 ranking for low grammar complexity ✓
● Majority of common use cases supported ✓
● Quality reference implementation available ✓
● Open Standard and Open Source ✓

Future Work

● Real-world trials of the
NETCDL workflow

● Wireless networking
Applications

● More applications of
‘natural language’ computing

NETCDL
The Open Standard for Network Verification

● Documentation, Standards, and Source Code
https://github.com/netcdl

● Project Homepage
http://netcdl.org

https://github.com/netcdl
https://github.com/netcdl
http://netcdl.org
http://netcdl.org

Backup slides

Document Links

● Example NETCDL Document
● Certifier Implementation Standards

https://gist.github.com/codyhanson/63ebfef0f8c2dbb36189f30bc94bd552
https://gist.github.com/codyhanson/63ebfef0f8c2dbb36189f30bc94bd552
https://gist.github.com/codyhanson/d52069cf04054705dac2175b46ec0e4e
https://gist.github.com/codyhanson/d52069cf04054705dac2175b46ec0e4e

Tools

TextX - Python DSL Creation Tool

Program:
 'begin'
 commands*=Command
 'end'
;
Command:
 InitialCommand |MoveCommand
;
InitialCommand:
 'initial' x=INT ',' y=INT
;
MoveCommand:
 direction=Direction (steps=INT)?
;
Direction:
 "up"|"down"|"left"|"right"
;
Comment:
 /\/\/.*$/
;

begin
 initial 3, 1
 up 4
 left 9
 down
 right 1
end

Generated
Python
Classes

Selected Related Works

Cucumber [23]

Feature: Accumulator addition

In order to increase the value of the Accumulator
As a user of the class
I want to be able to add an integer to an Accumulator object

Scenario: Add positive integer

Given an Accumulator initialized with 1
When I add 5 to the Accumulator
Then the value of the Accumulator should be 6

Cucumber Step Definition [23]

#Test Step definitions for the Accumulator class

Given /^I have an initial value of (\d+)$/ do |arg1|

$starting_value = arg1.to_i

end

Given /^I have constructed a new Accumulator with the parameter (\d+)$/ do |arg1|

$accumulator = Accumulator.new(arg1.to_i)

end

The Network Description Language [43]

Grammar Metrics Collected by SdfMetz[3]

Fluke LinkSprinter and OneTouch AT [13,14]

References

Reference numbers as cited in this presentation
correspond to those in the bibliography in the Master’s
Thesis.

